АГРОИНФормация

Агропортал - все для специалистов агропромышленного комплекса

Рост и размножение

Для микроорганизмов, как и для других живых существ, характерны рост и размножение. Под ростом клетки подразумевают согласованное увеличение количества всех химических компонентов (например, белка, РНК, ДНК), ведущее, в конечном счете, к возрастанию размеров и массы клетки. Рост микробной клетки не безграничен, достигнув определенной величины, клетка прекращает рост и начинает размножаться.

Размножение — это увеличение числа клеток микроорганизмов в Популяции. Микроорганизмы размножаются или путем поперечного деления, происходящего в процессе роста, или почкованием (которое встречается исключительно редко), или путем образования спор.

Прокариоты обычно размножаются бесполым путем — бинарным делением. В начале деления клетка удлиняется, затем делится нуклеоид. Воспроизведение нуклеоида, содержащего всю генетическую информацию, необходимую для жизнедеятельности микроорганизма,— наиболее важный из всех процессов, которые происходят при росте клетки.

Нуклеоид представлен суперспирализованной и весьма плотно уложенной молекулой ДНК, которая является самореплицирующейся структурой и известна под названием репликона. К репликонам относятся также плазмиды — генетические структуры, способные к самостоятельной репликации. Репликация ДНК осуществляется ферментами ДНК-полимеразами. Этот процесс начинается в определенной точке ДНК и происходит одновременно в двух противоположных направлениях. Закапчивается репликация также в определенном месте ДНК - В результате репликации число молекул ДНК в клетке удваивается. Вновь синтезированные молекулы ДНК постепенно расходятся в образующиеся дочерние клетки. Все это позволяет дочерней клетке иметь совершенно тождественную материнской клетке по последовательности нуклеотидов молекулу ДНК - Считают, что репликация ДИК, занимает почти 80% времени, в течение которого осуществляется деление бактериальной клетки.

После завершения репликации ДНК начинается сложный комплекс процессов, которые ведут к образованию межклеточной перегородки. Вначале с обеих сторон клетки происходит врастание двух слоев цитоплазматической мембраны, а затем между ними синтезируется пептидогликан и образуется перегородка, состоящая из двух слоев цитоплазматической мембраны и пептидогликана.

Во время репликации ДНК и образования делящей перегородки клетка микроорганизма непрерывно растет. В этот период происходят синтез пептидогликана клеточной стенки, цитоплазматической мембраны, образование новых рибосом и других органелл и соединений, которые входят в состав цитоплазмы. На последней стадии деления дочерние клетки отделяются друг от друга. Процесс деления у некоторых бактерий идет не до конца, в результате образуются цепочки клеток.

При делении палочковидных бактерий клетки вначале растут в длину (диаметр клетки не меняется). Когда длина бактерии удваивается, палочка несколько сужается в середине и затем распадается на две клетки. Чаще всего клетка делится на две равные части (изоморфное деление), однако встречается и неравномерное (гетероморфное) деление, когда дочерняя клетка больше материнской.

На рисунке 25 показано деление бактерии со жгутиками. Только у материнской клетки остаются жгутики. Дочерняя клетка не имеет жгутиков: они вырастают позднее. При многочисленных исследованиях жгутики обычно находили только у одной клетки из недавно разделенной пары. Можно полагать, что материнская клетка сохраняет главную часть первоначальной клеточной стенки, фибрии и жгутики.

Спирохеты, риккетсии, некоторые дрожжи и грибы, простейшие и другие организмы размножаются поперечным делением клеток.

Миксобактерии делятся перетяжкой. Сначала клетка в месте деления слегка суживается, далее клеточная стенка, постепенно впячиваясь с обеих сторон внутрь клетки, все больше и больше сужает ее и, наконец, делит на две. Дочерняя клетка, одетая уже собственной цитоплазматической мембраной, еще временно сохраняет общую клеточную стенку.

У бактерий иногда наблюдается «половой» процесс, или конъюгация (см. главу 4).

В результате роста и размножения клетки микроорганизма образуется колония микробов - потомков.

Микроорганизмы отличаются высоким темпом размножения, выражающимся временем генерации, то есть временем, в течение которого происходит деление клетки. Время генерации определяется видом микроорганизма, его возрастом и внешними условиями (составом питательной среды, температурой, pH и другими факторами).

При благоприятных условиях время генерации многих микроорганизмов колеблется от 20 до 30 мин. При такой скорости роста можно получить 6 генераций за 2 ч (для получения стольких же поколений у человека требуется 120 лет). Благодаря способности бактерий к быстрому размножению, в природе наблюдается их численный перевес над другими живыми организмами. Однако бактерии не могут очень долго продолжать расти с периодом генерации 20 мин. Если бы такой рост был возможен, то одна - единственная клетка кишечной палочки (Escherichia coli) через 24 ч образовала бы 272, или около 1022 потомков, общая масса которых составила бы несколько десятков тысяч тонн, а еще через 24 ч роста этой бактерии масса ее потомков превысила бы в несколько раз массу земного шара. Недостаток пищи, и накопление продуктов распада ограничивают такое бурное размножение бактерий. В проточной среде бактерии могут делиться через каждые 15—18 мин.

Наблюдения за ростом микроорганизмов, культивируемых на жидкой среде в замкнутых резервуарах, показывают, что скорость, их роста изменяется во времени. Внесенные в питательную среду микроорганизмы вначале не развиваются, они «привыкают» к условиям среды. Затем начинается их размножение с все возрастающей скоростью, достигающей максимума, на который они способны в данной среде. По мере исчерпания питательных веществ и накопления продуктов обмена рост замедляется, а затем полностью прекращается. Цикл развития бактерий состоит из нескольких фаз (рис. 26).

I. Исходная (стационарная) фаза начинается после внесения, микроорганизмов в питательную среду и продолжается от 1 до 2 ч. Во время этой фазы количество бактерий не увеличивается, и клетки не растут.

II. Лаг - фаза — период задержки размножения. В это время бактерии, внесенные в свежую питательную среду, начинают интенсивно расти, но скорость их деления остается невысокой.

Две первые фазы развития бактериальной популяции называют периодом приспособления к новой среде. К концу лаг – фазы клетки часто увеличивают свой объем. Длительность лаг – фазы зависит как от внешних условий, так и от возраста бактерий и их видовой специфичности.

III. Фаза интенсивного логарифмического, или экспоненциального, размножения. В этот период размножение бактерий идет с наибольшей скоростью, и число клеток увеличивается в геометрической прогрессии.

IV. В фазе отрицательного ускорения клетки бактерий становятся менее активными, и период генерации начинает удлиняться. Одна из причин, замедляющих размножение бактерий,— истощение питательной среды и накопление в ней ядовитых (токсических) продуктов обмена. Это замедляет ритм размножения. Некоторые клетки перестают размножаться и погибают.

V. Стационарная фаза — период, когда число вновь возникающих клеток примерно равно числу отмирающих. Поэтому количество живых клеток некоторое время остается практически неизменным. Однако при этом общая численность живых и мертвых бактерий несколько увеличивается, хотя и не так быстро. Эта фаза иногда называется «максимальной стационарной», так как при ней численность клеток в среде достигает максимума.

VI—VIII. Фазы отмирания характеризуются тем, что отмирание клеток преобладает над размножением. Во время прохождения VI фазы увеличивается число отмерших клеток. На смену этой фазе приходит VII — логарифмической гибели клеток, когда они отмирают с постоянной скоростью. Наконец, наступает VIII фаза, в которой скорость отмирания клеток бактерий постепенно уменьшается. Отмирание клеток бактериальной популяции в последние три фазы связано с изменением физико - химических свойств питательной среды в неблагоприятную для бактерий сторону и с другими причинами. Ритм гибели клеток в эти фазы становится быстрым, и число живых клеток все более снижается, до тех пор, пока они почти полностью не отмирают.

При описанном выше культивировании в замкнутом резервуаре микроорганизмы все время находятся в меняющихся условиях, это так называемая непроточная культура микроорганизмов. Сначала они имеют в избытке все питательные вещества, затем постепенно наступает недостаток в питании и отравление продуктами обмена. Все это приводит к снижению скорости роста, в результате чего культура переходит в стационарную фазу. Однако если добавлять в среду питательные вещества и одновременно удалять продукты обмена, то микроорганизмы могли бы пребывать в течение неопределенного времени в экспоненциальной фазе роста. Такой способ положен в основу проточного культивирования микроорганизмов, осуществляемого в хемостатах и турбидостатах с помощью специальных устройств для непрерывной подачи среды с регулируемой скоростью и для хорошего ее перемешивания.

Следовательно, в отличие от непроточной при проточной культуре для микроорганизмов создаются неизменные условия. Поэтому можно поддерживать непрерывный и постоянный прирост клеток при любой скорости роста культуры. Проточное культивирование микроорганизмов поддается автоматическому регулированию, оно весьма перспективно и широко внедряется в промышленность и лабораторную практику.

В физиологических исследованиях микроорганизмов важным является получение так называемых синхронных культур. Синхронной культурой называют бактериальную культуру (или популяцию), в которой все клетки находятся на одинаковой стадии клеточного цикла. Синхронные культуры обычно используют для изучения отдельных бактерий в процессе их роста.

You are here