Бактериальная клетка, несмотря на внешнюю простоту строения, представляет собой весьма сложный организм, для которого характерны процессы, свойственные всем живым существам.
Ультраструктуру бактерий удалось детально изучить после создания электронных микроскопов с большой разрешающей способностью, разработки техники получения ультратонких срезов клеток, появления фазово-контрастной микроскопии, усовершенствования методов микрохимических анализов. Разнообразные методы исследований дали возможность определить различные поверхностные и внутренние структуры у бактерий, (рис. 5).
К внешним структурам обычно относят капсулы, жгутики, фимбрии и пили, а также клеточную стейку, под которой расположена цитоплазматическая мембрана. Внутреннее содержимое бактерий представлено цитоплазмой, в которой находятся нуклеоид, рибосомы и мембранные структуры, а также разнообразные включения. Бациллы и некоторые другие бактерии образуют споры.
Капсула. Большинство бактерий окружены слоем вещества, расположенного поверх клеточной стенки. Это слизистое образование — капсула (рис. 6). Бывают макрокапсулы (толщина слоя 0,2 мкм), микрокапсулы (менее 0,2 мкм), слизистый слой и растворимая слизь.
По химическому составу капсулы бактерий можно разделить на два типа. Одни представлены полисахаридами, другие — полипептидами. Однако встречаются капсулы, состоящие из липидов, (у туберкулезных бактерий), гетерополисахаридов и других веществ. Капсулы содержат до 98% воды. Поэтому они создают дополнительный осмотический барьер, а также защищают клетку от механических повреждений и высыхания. Капсулы защищают клетки и от других неблагоприятных воздействий окружающей среды.
Замечено, что бактерии, имеющие капсулы, могут жить в такой среде, в которой рост бактерий без капсул ограничен.
Жгутики. Существуют два типа подвижных бактерий: скользящие и плавающие. Скольжение наблюдается у миксобактерий. и серных бактерий. Эти организмы могут совершать скольжение по поверхности в результате волнообразных сокращений, вызывающих периодическое изменение формы клетки.
Плавающие палочковидные бактерии передвигаются с помощью особых нитевидных придатков — жгутиков. За счет жгутиков передвигается большинство спирилл. Кокки, за исключением отдельных видов, не имеют жгутиков.
Бактерия с одним жгутиком называется монотрихом; бактерия с пучком жгутиков на одном конце клетки — лофотрихом; на обоих концах — амфитрихом; бактерия со жгутиками, расположенными по всей поверхности клетки, называется перитрихом (рис. 7).
Число жгутиков различно у разных видов бактерий. Например, спириллы (Spirillum) имеют от 5 до 30 жгутиков, вибрионы (Vibrio) — 1 или 2—3 жгутика на полюсе клетки, а у палочковидных бактерий Proteus vulgaris и Clostridium tetani обнаружено от 50 до 100 жгутиков. Толщина жгутиков колеблется от 10 до 20 нм, длина — от 3 до 15 .мкм, причем у одной и той же бактериальной клетки длина может изменяться в зависимости от состояния культуры и факторов внешней среды. В химическом отношении жгутики представляют собой белок флагеллин.
Белковые молекулы, из которых состоят жгутики, собраны в спиральные цепи, закругленные вокруг полой сердцевины.
Жгутики хорошо видны в электронном микроскопе, для наблюдения через оптический микроскоп требуется их специальная обработка. Жгутики не относятся к жизненно важным структурам бактериальной клетки. Так, бактерии, обладающие жгутиками, можно вырастить в условиях, при которых эти структуры у них не развиваются. У подвижных бактерий наблюдаются «фазовые вариации», то есть в течение одной фазы развития жгутики имеются, в другой — отсутствуют. Жгутики можно разрушить, а клетка останется жизнеспособной.
Жгутики прикрепляются к особой структуре — базальному тельцу, расположенному под цитоплазматической мембраной. Движение жгутику сообщает через его основание жгутиковый «мотор» — базальное тельце, состоящее из центрального стержня, вставленного в систему колец, которые вращаются относительно друг друга.
Бактериальные клетки со жгутиками двигаются со скоростью, которая зависит от особенностей их аппарата движения и свойств среды – вязкости, температуры рН, осмотического давления и др. Большинство бактерий за секунду проходят расстояние, равное размерам их клетки.
Однако некоторые бактерии при благоприятных условиях за то же время могут передвигаться на расстояние, превышающее размеры клетки в 50 раз и более.
Бактерии передвигаются беспорядочно, но способны и к направленным движениям, так называемым таксисам. В зависимости от внешних факторов, под воздействием которых происходит движение, различают хемотаксис, обусловленный разницей в концентрации химических веществ в среде, аэротаксис, связанный с разницей в содержании кислорода, и, наконец, фототаксис, когда условием направленного движения бактерий является различие в интенсивности освещения.
Фимбрии и пили. Кроме жгутиков, клетки бактерий могут иметь длинные, тонкие, прямые нити — фимбрии. Фимбрии значительно короче и тоньше жгутиков, но более многочисленны. Обнаружены они как у подвижных, так и у неподвижных организмов. Размеры фимбрий 0,3—4 мкм в длину и 5—10 нм в ширину. Число их достигает 100—200 и более (до нескольких тысяч) на одну бактериальную клетку.
Фимбрии состоят из белка — пилина.
В настоящее время известно несколько типов фимбрий, которые отличаются своими функциями. Наиболее изучены функции фимбрий первого и второго типов. Фимбрии первого типа имеют многие бактерии,
Что дало возможность назвать их «фимбриями общего типа». Наличие фимбрий первого типа помогает бактериальной клетке прилипать к другим клеткам или инертному субстрату, или способствовать образованию пленок на поверхности жидкостей, и поэтому считают, что фимбрии этого типа — органы прикрепления (рис. 8).
Большой интерес представляют фимбрии второго типа, так называемые половые фимбрии, или пили, имеющие внутри канал, через который передается генетический материал от одной клетки к другой при конъюгации бактерий. Пили также могут служить для прикрепления патогенных бактерий к тканям животных и человека.
Клеточная стенка — один из главных элементов структуры бактериальной клетки. Клеточная стенка обладает определенной ригидностью (жесткостью), но вместе с тем эластичностью и может изгибаться. Ее можно разрушить ультразвуком, ферментом лизоцимом и другими способами. В результате разрушения клеточной стенки содержимое клетки — цитоплазма с ее включениями, окруженная цитоплазматической мембраной, приобретает шаровидную форму. Такая округлившаяся клетка, образовавшаяся после удаления клеточной стенки у бактерии, называется протопластом (сферопластом). Отсюда следует, что стенка придает ‘бактериальной клетке определенную форму.
Клеточная стенка имеет и другие функции. Она защищает внутреннее содержимое клетки от действия механических и осмотических сил внешней среды, ей принадлежит важная роль в регуляции роста и деления бактерий и распределении генетического материала.
Толщина клеточной стенки колеблется от 10 до 80 нм и составляет около 20% сухого вещества бактериальной клетки. Клеточная стенка относительно проницаема для крупных молекул. Она связана с цитоплазматической мембраной соединительными тяжами - «мостиками».
Считают, что клеточная стенка ответственна за окрашивание бактерий по Граму. Способность (или, наоборот, неспособность) окрашиваться по Грамму связана с различием в химическом составе клеточных стенок бактерий.
Главным структурным компонентом клеточных стенок большиства исследованных бактерий является пептидогликан (муреин), представляющий собой гетерополимер, который построен из чередующихся остатков N-ацетил-N-глюкозамина и N-ацетилмурамовой кислоты, соединенных в-1,4-связями. Полисахаридные цепи связаны между собой короткими пептидными мостиками. Пептидогликан придает клеточной стенке ригидные свойства, благодаря чему бактериальная клетка способна сохранять свою форму.
У грамположительных бактерий клеточная стенка состоит главным образом из многослойного пептидогликана, в который сложным образом вплетены такие сопутствующие компоненты, как белки, полисахариды, а также так называемые тейхоевые кислоты (полимеры рибитфосфорной и глицеринфосфорной кислот).
У грамотрицательных бактерий пептидогликан однослойный. Сверху пептидогликана располагается структура, получившая название наружной мембраны. Она имеет мозаичное строение и состоит из фосфолипидов, липопротеидов, белков и сложного липополисахарида (ЛПС).
Содержание пептидогликана в клеточных стенках колеблется от 50 до 90% у грамположительных бактерий и от 1 до 10% у грамотрицательных.
Таким образом, неодинаковое отношение бактерий к окраске по Граму может быть объяснено различием в количестве пептидогликана и его локализацией в клеточной стенке.
В настоящее время выявлено, что поверхность клеточной стенки некоторых палочковидных форм бактерий покрыта выростами, шипами или буграми.
Клеточной стенки нет у микоплазм, а также у L-форм бактерий. Наименование L-форм (от названия Института имени Листера (Великобритания), где впервые изучены эти формы) получили бактерии, полностью или частично лишенные клеточной стенки (под влиянием антибиотиков или спонтанно без видимой причины) и сохранившие способность к размножению. Для L-форм разных бактерий характерно образование крупных и мелких шаровидных клеток. L-формы описаны у многих болезнетворных и сапрофитных бактерий.
Цитоплазматическая мембрана (ЦПМ). К клеточной стенке бактериальной клетки тесно прилегает внешний слой цитоплазмы — цитоплазматическая мембрана, состоящая обычно из двойного слоя липидов, каждая из поверхностей которого покрыта мономолекулярным слоем белка. Мембрана составляет около 8—15% сухого вещества клетки и содержит до 70—90% липидов клетки. Общая толщина мембраны равняется приблизительно 9 нм.
Цитоплазматическая мембрана играет роль осмотического барьера, контролирующего транспорт веществ в бактериальную клетку и из нее. Нередко мембрана дает внутрицитоплазматические впячивания (инвагинации), приводящие к образованию особых телец—мезосом.
Цитоплазматическая мембрана и мезосомы выполняют функции, свойственные мембранам и митохондриям высших организмов, в которых или на которых локализованы ферментные системы-поставщики энергии. В отличие от митохондрий в цитоплазматической мембране и мезосомах бактерий наряду с дыхательными системами ферментов и механизмом регуляции проницаемости располагаются специфичные ферментные системы, участвующие в таких процессах, как азотфиксация, хемосинтез и др.
С цитоплазматической мембраной, мезосомами и близкими структурами бактерий связаны также многие другие функции — биосинтез клеточной стенки и капсулы, выделение экзоферментов, деление и спорообразование и т. д.
Цитоплазма. Под цитоплазматической мембраной у бактерий находится цитоплазма. Это коллоидная система, состоящая из воды, белков, жиров, углеводов, минеральных соединений и других веществ, соотношение которых варьирует в зависимости от вида бактерий и их возраста. Цитоплазма бактерий имеет различные структурные элементы — внутрицитоплазматические мембраны, генетический аппарат, рибосомы и включения, остальная часть ее представлена цитозолем.
Цитозоль - это фракция цитоплазмы, которая имеет гомогенную консистенцию и состоит главным образом из белковых макромолекул (растворимых РНК, ферментных белков, продуктов и субстратов различных реакций) и служит поддерживающей средой для клеточных гранул. Изучение структуры цитоплазмы выявило ее мелкогранулярный характер, она представлена цитоплазматическими гранулами диаметром 10—20 нм. Многие из этих гранул являются рибосомами - частицами, состоящими из РНК (60%) и белка (40%). Каждая бактерия содержит от 5000 до 50 000 рибосом, которые служат центрами синтеза белков. Рибосомы совместно с молекулами информационной и транспортных РНК участвуют в синтезе белка в форме не изолированных частиц, а их агрегатов, называемых полирибосомами, или полисомами.
В цитоплазме цианобактерий имеются так называемые Тилакоиды (или Фикобилисомы) — мембранные фотосинтезирующие структуры, содержащие хлорофилл и каротиноиды, при помощи которых осуществляется фотосинтез. У пурпурных серобактерий фотосинтезирующие пигменты (бактериохлорофилл и каротиноиды) локализованы в хроматофорах, которые составляют от 40 до 50% массы клетки. Тилакоиды в основном состоят из белков и липидов. Предполагают, что тилакоиды связаны с цитоплазматической или внутренними мембранами. У зеленых бактерий пигменты, участвующие в фотосинтезе, содержатся в мембранных структурах, называемых хлоросомами. Клетки ряда водных бактерий содержат наполненные газом структуры — газовые вакуоли (аэросомы). Некоторые бактерии имеют структуры, называемые полиэдральными телами (в виде многоугольника), или карбоксисомами, где осуществляется процесс связывания С02 (у автотрофных бактерий).
Включения. В цитоплазме клеток бактерий часто содержатся гранулы различной формы и размеров. Их присутствие нельзя рассматривать как постоянный признак микроорганизма, обычно они в значительной степени связаны с физическими и химическими условиями среды обитания.
Многие внутрицитоплазматические гранулы состоят из соединений, которые служат для микроорганизмов источником энергии и углерода. Такие соединения обычно образуются, когда микроорганизм снабжается достаточным количеством питательных веществ, и используются, когда он попадает в неблагоприятные в отношении питания условия. В качестве резервных питательных веществ в клетках бактерий могут накапливаться вещества, состоящие из углеводов — гранулы гликогена (крахмала) или гранулезы (близкого к крахмалу полисахарида). При недостаточном поступлении углеродсодержащих веществ в питательную среду гранулы гликогена или гранулезы постепенно исчезают из клеток бактерий.
Большая часть бактерий в качестве резервного вещества синтезирует полимер из в - оксимасляной кислоты (поли - в - оксимасляная кислота). У некоторых видов бактерий в клетках накапливаются гранулы жира и волютина. Волютиновые гранулы, называемые еще метахроматическими гранулами, состоят преимущественно из полифосфатов и служат запасным источником фосфора. Волютин обнаруживается в виде крупных, хорошо видимых гранул, образующихся в больших количествах на средах, богатых глицерином или углеводами. В клетках серных бактерий в качестве включений встречается сера, которая образуется в результате окисления сероводорода и видна в виде расположенных непосредственно в цитоплазме блестящих полужидких капелек. Включения серы для аэробных тионовых бактерий, окисляющих сероводород, служат источником энергии. Некоторые серные бактерии наряду с капельками серы имеют зернышки аморфного карбоната кальция, роль которого пока не выяснена.
В цитоплазматическом матриксе содержатся также растворимые белки, различные ферменты, РНК, пигменты и низкомолекулярные соединения — углеводы, аминокислоты и нуклеотиды. Наличие в цитоплазме низкомолекулярных соединений обусловливает разность в осмотическом давлении клеточного содержимого и внешней среды. Величина внутриклеточного осмотического давления значительно изменяется у разных микроорганизмов.
Нуклеоид. В цитоплазме бактериальных клеток расположен эквивалент ядра, называемый нуклеоидом. Нуклеоид бактериальной клетки находится в ее центральной части. Предполагают, что в зависимости от стадии развития клетки нуклеоид может быть либо дискретным (прерывистым, состоящим из отдельных форменных структур), либо в виде хроматиновой сети — ядерного вещества, дисперсно распределенного в цитоплазме.
Ядерные структуры, присутствующие в цитоплазме бактерий в дискретном состоянии, имеют палочковидную форму (рис. 9).
Нуклеоиды бактерий содержат ДНК с молекулярной массой 2--3-109. Установлено, что бактериальная ДНК имеет форму свернутой в кольцо нити длиной 1,1 — 1,4 мм, называемой также бактериальной хромосомой и генофорой.
В покоящейся бактериальной клетке обычно содержится один нуклеоид; клетки, находящиеся в фазе, предшествующей делению, имеют два нуклеоида; в фазе логарифмического роста — размножения — до четырех и более нуклеоидов. В условиях, которые отрицательно сказываются на росте бактерий, могут возникать нитевидные многоядерные клетки. Это объясняется нарушением синхронизации между скоростью роста клетки и скоростью деления клетки и нуклеоида.
Нуклеоид бактерий — основной носитель информации о свойствах клетки и основной фактор передачи этих свойств потомству.
Кроме нуклеоида, в цитоплазме бактериальной клетки могут - находиться в сотни раз более короткие нити ДНК — так называемые внехромосомные факторы наследственности, получившие название плазмид. Как выяснено, плазмиды необязательно имеются у бактерий, но они придают организму дополнительные, полезные для него свойства, в частности связанные с размножением, устойчивостью к лекарственным препаратам, болезнетворностью и др.
Споры и спорообразование. Бактерии рода Bacillus, Clostridium и Desulfotomaculum, так же как и отдельные кокки и спириллы, способны образовывать споры (эндоспоры) — тельца сферической или эллиптической формы, устойчивые к воздействию неблагоприятных факторов (рис.10).
Споры преломляют свет и четко видны в световом микроскопе. Как правило, внутри бактериальной клетки образуется только одна спора. Однако в последнее время у отдельных видов Clostridium обнаружены клетки с двумя и более спорами. Обычно спорообразование начинается, когда бактерии испытывают недостаток питательных веществ или когда в среде в большом количестве накапливаются продукты обмена веществ бактерий. Поэтому споры можно рассматривать как приспособление организма для выживания в неблагоприятных условиях среды.
Формирование спор зависит от условий роста. Споры могут оставаться живыми в условиях, когда вегетативные клетки, то есть клетки, не образовавшие споры, погибают. Большинство спор хорошо переносит высушивание, многие споры нельзя убить даже кипячением в течение нескольких часов. Для их уничтожения требуется температура пара 120° С при давлении его 1 атм. (1,01* 105 Па). При этих условиях споры погибают через 20 мин. В сухом состоянии они погибают лишь при сильном нагревании (до 150—160°С) в течение нескольких часов. Споры отдельных видов бактерий отличаются особенной термоустойчивостью.
В процессе образования спор осуществляется синтез особого соединения — дипиколиновой кислоты (пиридин-2,6-дикарбоновая кислота), обычно отсутствующей у вегетативных клеток бактерий. Дипиколиновая кислота может составлять 10—15% массы сухой споры. Показано, что это вещество накапливается в центральной части споры — ее цитоплазме, образуя с ионами кальция комплекс, который вместе с повышенным содержанием других катионов (магния, марганца и калия)
Обеспечивает пребывание спор в состоянии покоя и их термоустойчивость.
Общая схема спорообразования может быть представлена в следующем виде. В результате неравномерного деления бактериальной клетки, сопровождающегося впячиванием цитоплазматической мембраны, наблюдается обособление части нуклеоида с небольшой частью цитоплазмы. Образовавшаяся проспора затем покрывается цитоплазматической мембраной бактериальной клетки.
Таким образом, внутри клетки бактерии возникает новая клетка — проспора, окруженная двумя мембранами. Затем между мембранами образуется кортикальный слой, или кортекс, состоящий из особых молекул пептидогликана.
Дальнейшее развитие споры заключается в образовании нескольких слоев споровых покровов и ее созревании. Споровые покровы формируются в основном из вновь синтезированных особых белков, а также липидов и гликолипидов. Электронномикроскопическое изучение ультратонких срезов спор многих бактерий показало, что поверх покровов споры образуется еще одна структура — экзоспориум, часто состоящий из ряда слоев и имеющий подчас разнообразную «лепную» форму. Диаметр споры приблизительно равен диаметру клетки, в которой она образовалась, или несколько превышает его. У некоторых бактерий спора формируется на конце клетки, которая при этом несколько расширяется, приобретая вид барабанной палочки. У других бактерий спора образуется в центре клетки, и последняя либо не меняет формы (род Bacillus), либо расширяется в середине, принимая вид веретена (род Clostridium).
После созревания споры клеточная стенка вегетативной части клетки разрушается, и спора выходит в окружающую среду. При попадании в благоприятные условия спора начинает прорастать.
Прорастанию предшествует поглощение спорой воды и последующее набухание. Затем оболочка под влиянием давления, вызванного ростом, разрывается, возникает ростовая трубка. В дальнейшем происходит удлинение освободившегося бактериального организма и, наконец, деление уже удлиненной клетки.
Споры бактерий могут длительное время (десятки, сотни и даже тысячи лет) существовать в покоящемся состоянии.
Имеются микроорганизмы, образующие относительно устойчивые к неблагоприятным условиям среды (температура, кислотность, аэрация и др.) покоящиеся клетки — цисты, не являющиеся спорами. Например, азотобактер образует цисты, устойчивые к высушиванию и теплу.
Известны и другие группы покоящихся клеток (миксоспоры миксобактерий, акинеты цианобактерий, эндоспоры актиномицетов и др.).